Properties

Hestia.DynamicAnisotropicType
DynamicAnisotropic <: AbstractAnisotropicProperty

Type DynamicAnisotropic contains the coefficients for anisotropic and temperature-dependent (dynamic) heat conduction

\[ \lambda(\theta) = diag(\lambda_{x}(\theta),\lambda_{y}(\theta),\lambda_{z}(\theta))\]

Elements

λx : x-axis: thermal conductivity coefficients

λy : y-axis: thermal conductivity coefficients

λz : z-axis: thermal conductivity coefficients

ρ : Mass density coefficients

c : Specific heat capacity coefficients

source
Hestia.DynamicAnisotropicMethod

DynamicAnisotropic(λx :: Vector{<:Real}, λy :: Vector{<:Real}, ρ :: Vector{<:Real}, c :: Vector{<:Real})

Returns a DynamicAnisotropic

source
Hestia.DynamicIsotropicType
DynamicIsotropic

Temperature-dependent isotropic properties

A record for static isotropic properties.

### Elements  
`λᵢ` : thermal conductivity coefficients 

`ρᵢ` : volumetric mass density coefficients

`cᵢ` : specific heat capacity coefficients
source
Hestia.StaticAnisotropicType
StaticAnisotropic <: AbstractAnisotropicProperty

Type StaticAnisotropic contains the coefficients for anisotropic and temperature-independent (static) heat conduction

\[ \lambda = diag(\lambda_{x},\lambda_{y},\lambda_{z})\]

Elements

λx : x-axis: thermal conductivity

λy : y-axis: thermal conductivity

λz : z-axis: thermal conductivity

ρ : Mass density

c : Specific heat capacity

source
Hestia.getdiffusivityMethod
getdiffusivity(prop :: StaticIsotropic)

Returns the diffusivity of a StaticIsotropic

α = λ/(ρ ⋅ c)

source
Hestia.specifypropertyMethod
specifyproperty(θ :: Real, c :: Vector{<: Real})
  • Temperature: θ
  • Coefficients: c

Computes

\[ \sum_{n=1}^{N} c_{n} \theta^{n-1}\]

source

Geometry

Hestia.HeatCuboidType
HeatCuboid <: AbstractCubicObject

Model of a two dimensional plate for heat conduction

Elements

dimension : tuple of length, width and heigth of the plate: (length, width, height)

sampling : tuple of spatial discretization: (Δx, Δy, Δz)

heatcells : number of heatcells in total

source
Hestia.HeatPlateType
HeatPlate <: AbstractCubicObject

Model of a two dimensional plate for heat conduction

Elements

dimension : tuple of length and width of the plate: (length, width)

sampling : tuple of spatial discretization: (Δx, Δy)

heatcells : Number of heatcells per direction: {Nx, Ny}

source
Hestia.HeatPlateMethod
HeatPlate(plate_length :: Real, plate_width ::  Real, Nx :: Integer, Ny :: Integer, heatcells :: Array{S,1} where S <: Real)

Returns a HeatPlate model

source
Hestia.HeatRodMethod
HeatRod(rod_length :: Real,  heatcells :: Integer )

Returns a HeatRod model

source
Hestia.getindicesMethod
getindices( heatPlate :: HeatPlate ; cellPosition::Symbol = :complete )

Returns all indices for a certain cellPosition

Valid CellPositions

:complete

:center

:west

:east

:south

:north

source
Hestia.getindicesMethod
getindices( heatrod :: HeatRod ; cellPosition::Symbol = :complete )

Returns all indices for a certain cellPosition

Valid CellPositions

:complete

:center

:west

:east

source

Boundary

Hestia.BoundaryMethod
Boundary(geometry :: AbstractGeometricalObject)

Initialize the boundary sides for a geometry.

source

Configuration

Hestia.RadialCharacteristicsType
RadialCharacteristics <: AbstractStaticCharacteristics

Stores the values for the calculation of $m ~ exp( -||M (x - xₛ)||^{2ν} )$

scaling : m ∈ [0, 1]

power : ν ∈ [0, ∞)

center : xₛ ∈ R^{3}

curvature : M ∈ R^{3 x 3} for the planar boundaries

source
Hestia.RadialCharacteristicsMethod
RadialCharacteristics( scale :: Real , power :: Integer, curvature :: Matrix{<: Real} )

The center is set to the origin (0,0,0).

source
Hestia.RadialCharacteristicsMethod
RadialCharacteristics( scale :: Real , power :: Integer, central_point :: Tuple{Real,Real,Real}, curvature :: Real)

Here the variable curvature is multiplied with the identity matrix to gain matrix M.

Returns a RadialCharacteristics.

source
Hestia.characterizeMethod
characterize(start :: Real, stop :: Real, step :: Real, config :: RadialCharacteristics; dim = 1 :: Integer )

x₁: dim = 1

x₂: dim = 2

x₃: dim = 3

source
Hestia.characterizeMethod
characterize(start :: Real, stop :: Real, step :: Real, config :: RadialCharacteristics; dim = 1 :: Integer )

x₁ ∪ x₂ dim = {1,2}

x₁ ∪ x₃: dim = {1,3}

x₂ ∪ x₃: dim = {2,3}

source

IOSetup

Hestia.IOSetupMethod
IOSetup(geometry :: AbstractGeometricalObject)

Initialize IOSetup as basic element for actuation and sensing.

source
Hestia.getCharacteristicsMethod
getCharacteristics(iosetup :: IOSetup, orientation :: Symbol)

Returns the characteristics and the identifier of each actuator or sensor for a certain IOSetup and boundary side.

source
Hestia.measureMethod
measure(temperatures :: Matrix{<:Real}, character :: Vector{<:Real})

Returns the weighted arithmetic mean of the measurement.

source
Hestia.measureMethod
measure(temperatures :: Vector{<:Real}, character :: Vector{<:Real})

Returns the weighted arithmetic mean of the measurement.

source